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Simple Cell Model with Collapse Instability 
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A cell model is introduced in which pairs of particles interact only within the same 
cell, and then only with a constant coupling ~b 0 . For positive q5 o the statistical 
thermodynamics is normal, but as q50 changes sign, the system manifests a collapse 
phenomenon with all particles tending to aggregate in the same cell. This collapse 
instability causes high-temperature series to diverge, but known asymptotic 
properties of Stirling numbers of the second kind allow one to establish Borel 
summability. The present model is equivalent to continuum models with bounded 
pair potentials when in the latter the space dimension D is permitted to go to 0 +. 
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1. I N T R O D U C T I O N  

Within the realm of  classical statistical mechanics the s tudy of  high- 
temperature series has been an effective tool  for unders tanding equilibrium 
properties. This technique has been applied both  to discrete lattice systems o f  
the Ising type, tl) and to cont inuous  systems comprising molecules with hard 
cores, tz) For  these types o f  systems it appears that  the high-temperature  
expansions o f  the usual the rmodynamic  properties are series with non-  
vanishing radii o f  convergence,  provided that  intermolecular  forces have 
short  range. 

In order  to simplify the otherwise formidable job  o f  evaluating high- 
order  series coefficients for  cont inuous  systems, it is advantageous  to have pair 
potentials consisting o f  finite sums of  Gaussians.  The simplest o f  these 
involves just one Gaussian componen t ,  and yields the "Gauss ian  core m o d e l "  
that  has already been extensively studied33-5) However ,  any finite sum of  
Gaussians is a bounded  potential ,  and evidence has been presented indicating 
that  in such a circumstance the high- temperature  expansions o f  thermo-  
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dynamic properties have vanishing radii of convergence/6) This is connected 
with the fact that a formal change in sign of the bounded pair potential leads to 
a collapse instability of the system, as a result of which all particles in the 
system become virtually coincident. In the complex plane of the variable fi 
= 1 /kBT ,  all thermodynamic properties then apparently possess essential 
singularities at fl = 0. 

Hence it is desirable to characterize the mathematical implications of the 
collapse instability in sufficient detail that asymptotic high-temperature series 
can be properly interpreted. That is the motivation behind the present study. 
For the sake of economy a conceptually simple cell model has been 
constructed and analyzed, in the belief that collapse instability and its effects 
are largely insensitive to specific details of the bounded interactions that cause 
them. We conclude that the naturally occurring high-temperature series for 
the model is Borel summable. 

Section 2 defines the cell model. Section 3 concerns construction and 
numerical investigation of its grand partition function, from which thermo- 
dynamic properties follow. Section 4 examines the collapse instability and 
how it influences the asymptotic magnitude of high-order series coefficients; 
these are the results which assure Borel summability. Finally, Section 5 
presents discussion of this and related problems. 

2. CELL M O D E L  

Let the volume V be divided into a number f~ of equivalent cells, each 
with volume 

o~ = V/f~ (2.1) 

When N point particles inhabit V at specific positions rl ..... r N there will be a 
potential energy ~(r 1 ,...,rN) describing interactions in the system. We suppose 
that go has a particularly simple form, namely that it consists only of pair 
interactions which vanish unless both particles involved reside in the same 
cell ; and furthermore the intracell pair interaction is just a constant : 

q~o > 0 (2.2) 

If 4~o is much larger than the thermal energy k n T  = 1/fl, then �9 acts so as 
to inhibit multiple occupancy in any of the cells. But if q5 o and l i f t  are 
comparable, multiple occupancy becomes energetically feasible. When ~b o is 
changed from positive to negative, crowding of many particles without bound 
into the same cell is encouraged, and it is this instability which makes the cell 
model worth examining. 

For any set of particle positions rl ..... rN there will be a corresponding set 
of cell occupation numbers n x ..... nn, where an arbitrary numbering scheme 
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has been assumed for the cells. Obviously 

N =  ~ n i 
i = 1  

Furthermore 

(2.3) 

c~ = �89 o ~ ni(n i - 1 )  (2.4) 
i = l  

As we shall see, collapse instability in this and related models is intimately 
connected to the quadratic nature of (I) expressed in local occupation 
numbers, for this implies an ability for properties that are normally extensive 
to behave in an abnormal, nonextensive manner. 

It has been brought to the author's attention that this cell model is 
structurally identical to one that Hertel and Thirring examined to study 
gravitational condensation/7) However, these authors impose important 
constraints, namely that N be fixed, and that the intracell coupling q5 o be real 
and negative and inversely proportional to N. None of these constraints apply 
to the present work, and the respective results are essentially unrelated. 

3. G R A N D  PARTIT ION FUNCTION 

The most natural way to examine the statistical mechanics of the cell 
model is by using the grand ensemble. The grand partition function is 

Za(fl' Y)= N=o ~ (yN/N') far1 ... fdrN exp(-/?(I)) (3.1) 

where y is the absolute activity, and where the integrations span the system 
volume V. Connection to the thermodynamic pressure p is established by the 
formula 

tip V = In Z G (3.2) 

while the mean number of particles in the system and the mean potential 
energy are given by 

( N )  = (~3 In ZG/c~ In y)~ (3.3) 

(q)) = - (0 In ZJOfl)y (3.4) 

Due to the simple form chosen for q), the grand partition function reduces 
to a product of identical factors, one for each cell: 

ZG([3, y) = If(u, v)] n (3.5a) 

f(u, v) = ~. (l/n!) exp(--un -- vn 2) (3.5b) 
n = O  
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u = - In(coy) - �89 o (3.5c) 

v = �89 (3.5d) 

In terms of the funct ionf the  reduced thermodynamic properties of the model 
are determined by the following expressions: 

fipco = l n f  (3.6) 

( N) / f~  = ( n )  = - (~ ln f/~u)~ (3.7) 

2(qb)/6of2 + ( N ) / ~ )  = - (0 In J/0v),, (3.8) 

These can be supplemented by an expression for S, the entropy per cell, 
relative to its value So for noninteracting particles at the same density: 

S-So lnf_(Olnf~ _(~lnf'~ 
kBO \~? In u l ,  ~,g In v ] ,  + (n )  In(n)  -- (n )  (3.9) 

It is clear from Eq. (3.5b) that the sum definingffails to converge when v 
< 0. For v = 0 the sum is elementary, yielding 

f (u ,  0) = exp [exp ( -  u)] (3.10) 

The case v > 0 does not produce elementary functions, but the sums f o r f a n d  
its derivatives are rapidly converging, so that numerical study is straight- 
forward and convenient. 

Table I presents a selection of thermodynamic properties calculated for 
(n )  = 1. The excess entropy (3.9) at this density has been plotted against the 
mean interaction energy in Fig. 1. The end points of this curve refer 
respectively to strict single occupancy (2(~)/qSof~ = O) and to independent 
occupancy (2(qb)/qS0f~ = 1), and the corresponding entropy change has often 
been called "communal  entropy. ''~81 

Table I. Cel l  Mode l  Properties for ( n )  = 1 

u v l n f  2 ( @ ) / ~ 0 ~  ( S  --  S o ) l k B ~  

0 0 1 1 1 
- 0 . 1  0 .0340438  1 .0330000 0 .9380128 0 .9989773 
- 0 . 5  0 .1822228 1 .1607909 0 .7528607  0 .9802021 

- 1.0 0 .3880839  1.3171483 0 .5979509  0 .9372873 

- 1.5 0 .6104552  1 .4748564 0 .4871796  0 .8827129  

- 2 . 0  0 .8442916  1 .6374886 0 .4022383 0 .8213866  

- 3.0 1 .3309898 1.9876593 0 .2763570  0 .6864774  

- 5 . 0  2 .3269321 2 .8023841 0 .1213836  0 .4117677  

- 7 . 0  3 .3267241 3.7228141 0 .0483328 0 .2103281 

- 10.0 4 .8267133 5 .1845548 0 .0112049  0 .0653508  

- 15.0 7 .3267131 7 .6742166 0 .0009293  0 .0077385  
i 
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Fig. 1. Excess entropy per cell at (n) = 1 plotted vs. reduced interaction strength. Point A is the 
position of incipient collapse, while point B corresponds to single occupancy. Thermodynamic 
states with real, positive temperatures lie on the curve between A(T = oo) and B(T = 0). 

4. COLLAPSE INSTABIL ITY 

In order  to examine the collapse instability it will be advantageous  to 
generate the formal  power series for f (u ,  v) in its second variable v, which 
measures the interaction strength in the system. F r o m  (3.5b) we have 

~=o . = o  m! n! 

,,=o rn! \ - d u u /  e x p [ e x p ( - u ) ]  (4.1) 

The question o f  whether this last series converges depends clearly on the 
behavior  o f  the indicated derivatives as m - ~  ~ .  

We can write 

( - d / d u )  TM  e x p [ e x p ( - u ) ]  = S2m[eXp(-u)] e x p [ e x p ( - u ) ]  (4.2) 

where $2,, is a polynomial  with degree 2m. The lowest order  cases are found to 
be 

So(x ) = 1 ,  S 2 ( x ) - - x + x  2, S 4 ( x ) = x + 7 x  2 + 6 x  3 + x  4 (4.3) 

I f  the general case is written thus (for p > 0) 

P 

Sp(x) = ~, S~q)x q (4.4) 
q = l  
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it follows from Eq. (4.2) directly that the coefficients obey the following 
recursion relation : 

S{q) = qS{pq, + S~q-1) (4.5) p + l  

Consequently the SCp q) can be identified as Stirling numbers of the second 
kind, ~9) for which extensive tables exist. All nonvanishing S~ q) are positive. 

We thus have 

f (u ,  v) ~ exp[exp(-  u)] ~ ( -  v)~m Szm[exp(- u)] (4.6) 
,,=0 m! 

The convergence of this power series in v is controlled by the large-m behavior 
of 

Rm(u) -- Sz,,[exp(- u)]/mS2,,_ 2[exp(-  u)] (4.7) 

i.e., the ratios of successive series coefficients. These ratios have been studied 
numerically to moderately high order. Figure 2 presents some typical results 
for m ~< 30 and u = - 1, 0, 1. In all cases that have been examined the R,, show 
an unmistakable trend toward infinity with increasing m. The ratio test for 
series ~1~ then would imply that series (4.6) has a vanishing radius of 
convergence. 

The properties of Stirling numbers of the second kind have been 
presented in the mathematical literature with considerable detail, ca 1) These 
properties allow one to demonstrate that indeed the R,, diverge with m: 

4m , ( ) 1  ~ 0 1 
Rm (l~m)~ [_ + ~ (4.8) 

16 

E 
a:" 12 

l i 

24 

2O 

I i I T ~  

o o O  o ~  

ooooooO o~176176176176176 

o o 
o o 

o o o u=o e~e 

o ~ 1 7 6  ee i ""2[ ~176176 
4 O eOQ 

D O 0  O 0  

0 I 1 

m 

Fig. 2. Coefficient ratios for asymptotic expansion (4.6). The R,, are defined by Eq. (4.7). 
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The details are contained in the Appendix. 
Fortunately the divergent series (4.6) is Borel summable. (12) If we write 

f (u ,  v) = e x p ( - t ) g ( u ,  v t )d t  (4.9) 

then g is the Borel transform o f f  with respect to its second variable v. 
Corresponding to the divergent series (4.6) f o r f w e  have a convergent series 
for 9: 

g(u, s) = exp[exp( -u ) ]  
( - s )"  

m=0 ~ S 2 " [ e x p ( - u ) ]  (4.10) 

The coefficient ratios for this transform are R,,/m, and since these converge to 
zero with increasing m, we can be certain that sum (4.10) converges 
throughout the complex s plane. 

The Borel transform evidently has banished the essential singularity at 
the origin of the v plane (due to the collapse instability) to the point at infinity 
in the s plane. It is for this reason that the Borel transform is a vital tool for 
interpreting high-temperature series, for without it the mathematical effects of 
collapse instability can completely obscure information about physical 
properties (such as phase transitions in some models) that occur away from fl 
~ 0 .  

5. D ISCUSSION 

While the variables u and v are the natural choice for discussing the 
properties of  the presentcell model, it is also valuable to consider alternatives. 
In particular one can inquire about the high-temperature series at fixed 
density. One approach would employ Eq. (3.7) to eliminate u from f ;  however, 
this involves a cumbersome series reversion. Alternatively, one can start with 
the canonical partition function for a fixed number N of particles [cf. Eq. 
(3.1)]: 

ZN(fl) -- 2~NN ! dr 1 ' d r s e x p ( - f l q ) )  (5.1) 

where 2 r is the mean thermal de Broglie wavelength and D is the space 
dimension. Then established procedures can be employed to develop In ZN, 
the Helmholtz free energy times - f l ,  in a fl series. 

We will not dwell upon the details of this last expansion technique, but 
only note that it closely parallels the analogous procedure that has been 
already carried out for the Gaussian core model. (6) Not only are the 
irreducible cluster graphs encountered the same topologically, but interest- 
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ingly the values to be assigned to those graphs for the present case correspond 
exactly to setting D -- 0 in the Gaussian core model; this reduction demands 
that density p for the present cell model be taken as (N)/~ and that k~T be 
measured in units 4)o. The excess Helmholtz free energy b~ x) per particle in the 
conventional infinite-system limit is thus found to be 

lim flF(~X)(fl) - b12(O)PflfP~ ~' I ~ b"j(O)/-l] (-fl~~ (5.2) 
N ~ Q ~  n = 2  j = 2  

Table I of Ref. 6 lists all b,j(D) for n ~< 8. 
Just as the ratios Rm, Eq. (4.7), were useful in analyzing convergence 

properties o f f ,  so too are the corresponding ratios 

1 r.(p) = b . j ( o ) / -  ~ b ._  1 a(0)p  ~-  1 (5.3) 
j=2  j 

useful for analyzing the convergence properties of the series (5.2). Figure 3 
shows a plot of these ratios for n ~< 8 and p = e - l ,  1, e. Although these 
calculations unfortunately cannot be carried to the same high order as shown 
for the previous case in Fig. 2, it may be significant that the beginnings of the 
same qualitative trends seem to be present. This gives rise to the speculation 
that the same type of essential singularity may be present in the complex fl~b o 
plane for the constant-# expansion of Helmholtz free energy as we en- 
countered earlier with constant-u expansion of the grand partition function. 
This in turn implies that the Borel transform is also appropriate for 
interpretation of constant-p series. 

The argument can be carried a bit further, though with less certainty. Our 
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Fig. 3. Coefficient ratios [Eq. (5.3)] for the constant-density expansion of the excess Helmholtz 
free energy. The point r 2 = �89 is common to all densities. 
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cell model is in fact the zero-dimensional limit for any classical system of 
particles with bounded pair interactions. One can show from the available 
theory of arbitrary-D spaces ~13) that the limit D---, 0 + concentrates "vol- 
ume" strongly at the origin so that interacting particles only experience the 
pair potential at zero separation. To the extent that the present work justifies 
use of Borel transforms as the appropriate tool for handling the collapse 
instability at least when D = 0, it appears then reasonable that the same 
technique might be appropriate for this general family of models when D > 0. 

With respect to collapse instability and its series implications, it appears 
that system dimension D plays far less important a role than does the pairwise 
additivity of the interaction. Series divergence in Section 3 can readily be 
traced to the fact that the number of simultaneously interacting particles in a 
cell n(n - 1)/2 grows quadratically with occupation number n. When ~b 0 < 0 
the quadratic plunge of cell potential to - oo then cannot be inhibited by 
entropy effects (which are only linear in n). Nevertheless, we have seen that the 
resulting collapse singularity remains mathematically tractable. 

However, suppose that the potential energy within a cell increases in 
magnitude with n more rapidly than quadratically. In particular, replacement 
of Eq. (2.4) by the following cubic alternative (corresponding roughly to 
three-body interactions): 

f~ 

(I) =�89 ~ ni(ni z -  1) (5.4) 
i = 1  

causes simple but profound changes in the foregoing analysis. Equation (3.5b) 
defining f (u,  v) must then be replaced by 

f3(u, v) = ~ (1/n!)exp(-un - vn 3) (5.5) 
n = 0  

and the asymptotic v expansion (4.6) becomes 

f 3(u, v) ~ exp[exp(-u)] 
( -v ) "  

,,=0 m~-~ S3m[exp(-u)] (5.6) 

From this it follows that 

R,,(u) (lnm) 3 1 + ~ (5.7) 

and because these grow faster than linearly with m, a single Borel transform 
operation will not convert the divergent series to a convergent one. 

In connection with this last point it would be interesting to construct and 
study a classical continuum model with specific three-body interactions. If 
these were chosen to be Gaussian functions of the triplet relative configuration 
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variables, the irreducible clusters required for high-temperature series (at 
constant p) could again be obtained in closed form. It would then be possible 
to check if leading-order coefficients seemed to obey the qualitative pattern 
indicated by Eq. (5.7). 

A P P E N D I X  

Moser and Wyman ~ have derived the asymptotic behavior of the 
numbers S ~  qJ for p and q both large. In leading order their results state 

s~q) ~ p ! (e g - 1)q 
2RTqi ~ 1 / 2  [1 + O(q-1)] (A.1) 

where 
R / ( 1  - e - R )  = p / q  

and 
(A.2) 

(A.3) H = eR(e a - 1 - R ) / 2 ( e  R - 1) 2 

Regarding R and H as functions of the ratio 

0 = q / p  (A.4) 
we have for small 0 

n ( o )  = (1/0)[1 + O(e ,/0)], H(O) = �89 + O[(1/0)e- ~;0]} (A.5) 

while for 0 near 1 

R(O) = 2(1 - 0) + O[(1 - 0)2], H(O)  = �88 + O(1 - 0) (a.6) 

Both R and H are monotonically decreasing functions of 0 in the relevant 
interval 0 ~< 0 ~< 1. 

Upon using Stirling's approximation for the factorials it contains, the 
leading term in (A.1) may be put into the following form: 

S ~  ") ~ [ L ( p ,  O ] v / [ z o ( r c p R H  )l /2]  (A.7) 

where 
L ( p  , O) = p l  - ~ 1 7 6  e ~  l R -  l (e R - 1) ~ (A.8) 

For very large values of p, the behavior of expression (A.7) is controlled 
primarily by the L v factor, with the remaining factor providing a minor 
modulation. In fact L posseses a single maximum as a function of 0 in 0 < 0 
< 1, and so raising L to the high power p causes the S~ q) to exhibit a single, 
narrow maximum vs. q at fixed p. 

We can locate the L maximum by taking logarithms in Eq. (A.8) and 
setting the first 0 derivative to zero: 
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The large parameter in this equation is In p, and it follows from the properties 
given for R(8) that the root 8 0 to (A.9) must perforce be close to zero. If  that is 
the case, the first of  Eqs. (A.5) can be used to eliminate R(8) from Eq. (A.9). 
We finally conclude that the L maximum for large p must asymptotically be 
located at 

0 o ~ 1/lnp (A.10) 

For  q values reasonably close to Sop, the region of the Sip q) maximum, it 
will suffice for present purposes to introduce a Gaussian approximation to L p, 
i.e., to L itself. This is accomplished by calculating first the second 8 derivative 
of In L at 8 = 0o to establish the proper Gaussian width. Substitution in Eq. 
(A.7) then yields the following result: 

s~pq ) ~ p! exp(p/ lnp)  e x p [ - � 8 9  ln2p(8 - 80 )  2]  (A.11) 
2z~p(ln p)p-(1/2) (p/lnp) 

As p increases, this Gaussian distribution of values for the S~p q) widens with 
respect to q. 

Now we can estimate the polynomials Sp: 

Sp(e ~) = s~vq)e "q ~ p d8 S~p~176 (A. 12) 
q = l  

The last expression is intended to be used with (A. 11). In fact it is appropriate 
to extend the range of 8 integration to infinity in both directions. The 
integration then becomes elementary, yielding 

p! exp[(1 - u)p/ln p + uZp/(2 In 2 p)] 
Sp[exp( -u ) ]  ~ (21zp)l/2(ln p)P+(1/2)_(p/~np) (A.13) 

Finally we are in a position to estimate the ratios Rm appearing in Eq: 
(4.7) when m is large. Using Eq. (A.13), we find 

4~ o()] 
Rm (lnm) 2 1 + ~ (A.14) 

The dependence of these ratios on u appears only in those higher order 
correction terms not explicitly shown. 
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